22 research outputs found

    Variational Data Assimilation for Optimizing Boundary Conditions in Ocean Models

    Get PDF
    International audienceThe review describes the development of ideas Gury Ivanovich Marchuk in the field of variational data assimilation for ocean models applied in particular in coupled models for long-range weather forecasts. Particular attention is paid to the optimization of boundary conditions on rigid boundaries. As idealized and realistic model configurations are considered. It is shown that the optimization allows us to determine the most sensitive model operators and bring the model solution closer to the assimilated data

    Uncertainty in the Representation of Orography in Weather and Climate Models and Implications for Parameterized Drag

    Get PDF
    The representation of orographic drag remains a major source of uncertainty for numerical weather prediction (NWP) and climate models. Its accuracy depends on contributions from both the model grid‐scale orography (GSO) and the subgrid‐scale orography (SSO). Different models use different source orography datasets and different methodologies to derive these orography fields. This study presents the first comparison of orography fields across several operational global NWP models. It also investigates the sensitivity of an orographic drag parameterisation to the inter‐model spread in SSO fields and the resulting implications for representing the northern hemisphere winter circulation in a NWP model. The inter‐model spread in both the GSO and the SSO fields is found to be considerable. This is due to differences in the underlying source dataset employed and in the manner in which this dataset is processed (in particular how it is smoothed and interpolated) to generate the model fields. The sensitivity of parameterised orographic drag to the inter‐model variability in SSO fields is shown to be considerable and dominated by the influence of two SSO fields: the standard deviation and the mean gradient of the SSO. NWP model sensitivity experiments demonstrate that the inter‐model spread in these fields is of first‐order importance to the inter‐model spread in parameterised surface stress, and to current known systematic model biases. The revealed importance of the SSO fields supports careful reconsideration of how these fields are generated, guiding future development of orographic drag parameterisations and re‐evaluation of the resolved impacts of orography on the flow

    The WWRP Polar Prediction Project (PPP)

    Get PDF
    Mission statement: “Promote cooperative international research enabling development of improved weather and environmental prediction services for the polar regions, on time scales from hours to seasonal”. Increased economic, transportation and research activities in polar regions are leading to more demands for sustained and improved availability of predictive weather and climate information to support decision-making. However, partly as a result of a strong emphasis of previous international efforts on lower and middle latitudes, many gaps in weather, sub-seasonal and seasonal forecasting in polar regions hamper reliable decision making in the Arctic, Antarctic and possibly the middle latitudes as well. In order to advance polar prediction capabilities, the WWRP Polar Prediction Project (PPP) has been established as one of three THORPEX (THe Observing System Research and Predictability EXperiment) legacy activities. The aim of PPP, a ten year endeavour (2013-2022), is to promote cooperative international research enabling development of improved weather and environmental prediction services for the polar regions, on hourly to seasonal time scales. In order to achieve its goals, PPP will enhance international and interdisciplinary collaboration through the development of strong linkages with related initiatives; strengthen linkages between academia, research institutions and operational forecasting centres; promote interactions and communication between research and stakeholders; and foster education and outreach. Flagship research activities of PPP include sea ice prediction, polar-lower latitude linkages and the Year of Polar Prediction (YOPP) - an intensive observational, coupled modelling, service-oriented research and educational effort in the period mid-2017 to mid-2019

    Advancing polar prediction capabilities on daily to seasonal time scales

    Get PDF
    It is argued that existing polar prediction systems do not yet meet users’ needs; and possible ways forward in advancing prediction capacity in polar regions and beyond are outlined. The polar regions have been attracting more and more attention in recent years, fuelled by the perceptible impacts of anthropogenic climate change. Polar climate change provides new opportunities, such as shorter shipping routes between Europe and East Asia, but also new risks such as the potential for industrial accidents or emergencies in ice-covered seas. Here, it is argued that environmental prediction systems for the polar regions are less developed than elsewhere. There are many reasons for this situation, including the polar regions being (historically) lower priority, with less in situ observations, and with numerous local physical processes that are less well-represented by models. By contrasting the relative importance of different physical processes in polar and lower latitudes, the need for a dedicated polar prediction effort is illustrated. Research priorities are identified that will help to advance environmental polar prediction capabilities. Examples include an improvement of the polar observing system; the use of coupled atmosphere-sea ice-ocean models, even for short-term prediction; and insight into polar-lower latitude linkages and their role for forecasting. Given the enormity of some of the challenges ahead, in a harsh and remote environment such as the polar regions, it is argued that rapid progress will only be possible with a coordinated international effort. More specifically, it is proposed to hold a Year of Polar Prediction (YOPP) from mid-2017 to mid-2019 in which the international research and operational forecasting community will work together with stakeholders in a period of intensive observing, modelling, prediction, verification, user-engagement and educational activities

    The Year of Polar Prediction

    Get PDF
    The Year of Polar Prediction (YOPP) has the mission to enable a significant improvement in environmental prediction capabilities for the polar regions and beyond, by coordinating a period of intensive observing, modelling, prediction, verification, user- engagement and education activities. The YOPP Core Phase will be from mid-2017 to mid-2019, flanked by a Preparation Phase and a Consolidation Phase. YOPP is a key component of the World Meteorological Organization – World Weather Research Programme (WMO-WWRP) Polar Prediction Project (PPP). The objectives of YOPP are to: 1. Improve the existing polar observing system (better coverage, higher-quality observations); 2. Gather additional observations through field programmes aimed at improving understanding of key polar processes; 3. Develop improved representation of key polar processes in coupled (and uncoupled) models used for prediction; 4. Develop improved (coupled) data assimilation systems accounting for challenges in the polar regions such as sparseness of observational data; 5. Explore the predictability of the atmosphere-cryosphere-ocean system, with a focus on sea ice, on time scales from days to seasons; 6. Improve understanding of linkages between polar regions and lower latitudes and assess skill of models representing these linkages; 7. Improve verification of polar weather and environmental predictions to obtain better quantitative knowledge on model performance, and on the skill, especially for user-relevant parameters; 8. Demonstrate the benefits of using predictive information for a spectrum of user types and services; 9. Provide training opportunities to generate a sound knowledge base (and its transfer across generations) on polar prediction related issues. The PPP Steering Group provides endorsement for projects that contribute to YOPP to enhance coordination, visibility, communication, and networking. This White Paper is based largely on the much more comprehensive YOPP Implementation Plan (WWRP/PPP No. 3 – 2014), but has an emphasis on Arctic observations

    WWRP Polar Prediction Project Implementation Plan for the Year of Polar Prediction (YOPP)

    Get PDF
    The Year of Polar Prediction (YOPP) is planned for mid-2017 to mid-2019, centred on 2018. Its goal is to enable a significant improvement in environmental prediction capabilities for the polar regions and beyond, by coordinating a period of intensive observing, modelling, prediction, verification, user-engagement and education activities. With a focus on time scales from hours to a season, YOPP is a major initiative of the World Meteorological Organization’s World Weather Research Programme (WWRP) and a key component of the Polar Prediction Project (PPP). YOPP is being planned and coordinated by the PPP Steering Group together with representatives from partners and other initiatives, including the World Climate Research Programme’s Polar Climate Predictability Initiative (PCPI). The objectives of YOPP are to: 1. Improve the existing polar observing system (enhanced coverage, higher-quality observations). 2. Gather additional observations through field programmes aimed at improving understanding of key polar processes. 3. Develop improved representation of key polar processes in (un)coupled models used for prediction. 4. Develop improved (coupled) data assimilation systems accounting for challenges in the polar regions such as sparseness of observational data. 5. Explore the predictability of the atmosphere-cryosphere-ocean system, with a focus on sea ice, on time scales from hours to a season. 6. Improve understanding of linkages between polar regions and lower latitudes, assess skill of models representing these linkages, and determine the impact of improved polar prediction on forecast skill in lower latitudes. 7. Improve verification of polar weather and environmental predictions to obtain better quantitative knowledge on model performance, and on the skill, especially for user- relevant parameters. 8. Identify various stakeholders and establish their decisionmaking needs with respect to weather, climate, ice, and related environmental services. 9. Assess the costs and benefits of using predictive information for a spectrum of users and services. 10. Provide training opportunities to generate a sound knowledge base (and its transfer across generations) on polar prediction related issues. YOPP is implemented in three distinct phases. During the YOPP Preparation Phase (2013 through to mid-2017) this Implementation Plan was developed, which includes key outcomes of consultations with partners at the YOPP Summit in July 2015. Plans will be further developed and refined through focused international workshops. There will be engagement with stakeholders and arrangement of funding, coordination of observations and modelling activities, and preparatory research. During the YOPP Core Phase (mid-2017 to mid-2019), four elements will be staged: intensive observing periods for both hemispheres, a complementary intensive modelling and prediction period, a period of enhanced monitoring of forecast use in decisionmaking including verification, and a special educational effort. Finally, during the YOPP Consolidation Phase (mid-2019 to 2022) the legacy of data, science and publications will be organized. The WWRP-PPP Steering Group provides endorsement throughout the YOPP phases for projects that contribute to YOPP. This process facilitates coordination and enhances visibility, communication, and networking

    Global semi-Lagrangian atmospheric model based on compact finite-differences and its implementation on a parallel computer

    Get PDF
    The semi-Lagrangian atmospheric model on the sphere based on compact finite differences is presented. In the two-dimensional case, the potential vorticity is used as one of the prognostic variables. Fourth-order compact finite differences are used to discretize first- and second-order derivatives. The results including real data tests presented for 2D shallow water version with orography demonstrate its accuracy with the time steps several times greater than in Eulerian model. The 3D version of the model uses the absolute vorticity equation. Some results including a real data forecast are presented. The parallel implementation of the 3D model on a distributed memory parallel computer is described

    Global semi-Lagrangian atmospheric model based on compact finite-differences

    No full text
    The semi-Lagrangian atmospheric model on the sphere is presented. In the 2D case, the potential vorticity is used as one of the prognostic variables. The wind field is expressed in terms of a stream function and velocity potential. Fourth-order compact finite differences are used to discretize first- and second-order derivatives. The results including real data tests presented for 2D shallow water version with orography demonstrate its accuracy as well as capability to maintain reasonable behaviour of global invariants with the time-steps several times greater than in Eulerian model

    STRUCTURE AND ALGORITHMS OF SL-AV ATMOSPHERE MODEL PARALLEL PROGRAM COMPLEX

    No full text
    We present recent modications of the SL-AV global at-mosphere model parallel structure and algorithms. The modication ofthe hybrid MPI+OpenMP parallelisation structure as well as new paral-lel I/O system is described. The new multigrid algorithm for solving thelinear algebraic equations systems arising from discretization at the re-duced latitude-longitude grid is introduced and the convergence resultsfor this method are presented

    Systematic errors in northern Eurasian short-term weather forecasts induced by atmospheric boundary layer thickness

    No full text
    Systematic errors in forecast near-surface air temperature (SAT) still constitute a considerable problem for numerical weather prediction (NWP) at high latitudes. Numerous studies in the past have attempted to reduce this problem through recalibration of physical parameterization schemes and better approximation of the surface energy budget. The errors, however, remain despite notable improvements in the overall weather forecast performance. This study looks at the problem from a different perspective. It analyzes asymmetries in the SAT forecast errors. The study reveals a statistical pattern of warm SAT biases under cold weather conditions and cold SAT biases under warm weather conditions. The largest errors were found in shallow atmospheric boundary layers (ABLs). The study attributes the problem to the modeled excessive ABL thickness in northern Eurasia (the NEFI region). The ABL thickness is considered as a scaling factor controlling the efficacy of the applied surface heating. Too thick an ABL damps the magnitude and agility of the SAT response. The study utilized the operational model SL-AV of the Russian Hydrometeorological Centre. Two turbulence schemes were evaluated in the northern European and western Siberian regions of Russia against observations from 73 meteorological stations. The pTKE (old) scheme is based on the local balance of the turbulence characteristics. The TOUCANS (new) scheme incorporated the total turbulence energy equations in an energy-flux balance approach. Neither scheme uses the ABL thickness as a prognostic parameter. The study reveals that the SAT errors are consistent with the damped response of temperature and reduced agility of temperature fluctuations in too thick ABLs. The TOUCANS scheme did not improve those features, probably because it links the turbulent fluxes and the ABL thickness. The SAT errors in shallow ABLs persist in the new scheme. This study emphasizes the need for a closer look at the ABL thickness in the NWP models
    corecore